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A wake model for free-streamline flow theory 
Part 1. Fully and partially developed wake flows 

and cavity flows past an oblique flat plate 

By T. YAO-TSU W U  
California Institute of Technology, Pasadena, California 

(Received 2 November 1961) 

A wake model for the free-streamline theory is proposed to treat the two-dimen- 
sional flow past an obstacle with a wake or cavity formation. In  this model the 
wake flow is approximately described in the large by an equivalent potential 
flow such that along the wake boundary the pressure first assumes a prescribed 
constant under-pressure in a region downstream of the separation points (called 
the near-wake) and then increases continuously from this under-pressure to the 
given free-stream value in an infinite wake strip of finite width (the far-wake). 
Application of this wake model provides a rather smooth continuous transition 
of the hydrodynamic forces from the fully developed wake flow t o  the fully 
wetted flow as the wake disappears. When applied to  the wake flow past an in- 
clined flat plate, this model yields the exact solution in a closed form for the whole 
range of the wake under-pressure coefficient. 

1. Introduction 
For the physical flow of an incompressible fluid past a bluff body, experimental 

observations indicate that the flow generally separates from certain points on 
the obstacle, resulting in wake formation, or, in the case of the cavitating flow 
of a liquid medium, a vapour-gas cavity occupying a near-wake region. Extending 
across the separated streamline there is the so-called free shear layer which is 
known experimentally to be thin and usually quite steady within a certain dis- 
tance downstream of the separation point. For this reason this part of the wake 
will be called the ‘near-wake’, or the ‘free-streamline range’. The pressure in 
such a region is in general approximately constant; this will be called the wake 
under-pressure, or the cavity pressure in the case of cavity flows. 

Further downstream, however, the shear layer gradually becomes broader as 
the vorticity diffuses and at the same time non-uniformity of the pressure dis- 
tribution across the layer increases. As a result, these shear layers become 
unstable and do not continue smoothly far downstream, but roll up to form 
vortices or become directly the region of turbulent mixing. These vortices mix 
and diffuse rapidly and are eventually dissipated in the wake. In  the case of 
cavitating flows, rather regular vortex wakes behind the cavity are usually 
observed also. Thus, after the cavity closes, the flow is rather similar in nature to 
ordinary wake flows. In  such a range, the shape of the free streamline cannot be 
determined definitely and (with a constant upstream velocity) the wake flow is 
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only stationary in the mean. This part of the wake will be called the ‘far-wake’, 
or the ‘mixing range’. I n  between the near- and far-wakes there may exist a 
transition region in which the separated free streamlines from the two sides of the 
body re-attach to each other. Along the far-wake the mean pressure increases 
gradually from the wake under-pressure (or the cavity pressure) and finally 
recovers the main stream pressure far downstream. 

It may be expected on physical grounds that the flow outside the obstacle 
and the near-wake region may be approximated with good accuracy by a poten- 
tial flow. Only when the attempt is made t o  extend this approximate potential 
flow to large distances from the body (including the far-wake) do the various 
wake-flow and cavity-flow models arise, such as the Riabouchinsky model (Ria- 
bouchinsky 1920), the re-entrant jet model (see, for example, Kreisel 1946; 
Gilbarg & Serrin 1950), and the wake model proposed independently by Joukow- 
sky (1890), Rosliko (1954, 1955) and Eppler (1954). Some of the physical signifi- 
cance of these models has been discussed by Wu (1956a).  In  each of these flow 
models an artifice of some sort is introduced to admit the under-pressure coeffi- 
cient as a free parameter, to account for the essential feature of a very compli- 
cated process of viscous dissipation in the wake, and to replace the actual wake 
flow of a real fluid by a simplified model within the framework of an equivalent 
potential flow. The validity of these flow models will therefore have to be justi- 
fied by their agreement with experimentalobservations of the actual flow fieldnear 
the body as well as the hydrodynamic forces and moments acting on the body. 

The purpose of this paper is twofold. First, it serves to introduce a relatively 
simple wake model which can be readily applied to treat the wake flow or cavity 
flow past a lifting surface, such as a stalled airfoil or a cavitating hydrofoil. 
Secondly, it is intended to distinguish between the fully and partially developed 
wake (or cavity) flows and to recover the limiting case of fully wetted flow as the 
wake disappears. The wake flow will be called ful ly  developed (or ful ly  cavitating 
in case of cavity flows) if the region of the constant-pressure near-wake extends 
beyond the trailing edge of the plate, and will be called partially developed (or 
partially cavitating) if the near-wake region terminates in front of the trailing edge. 
For brevity these two flow regimes will also be called the full wake flow and the 
partial wake flow. 

In  order to develop a theory for the wake flow or cavity flow in which the 
region of constant pressure may have an arbitrary length, a plane wake-flow 
model is proposed here using the following physical assumptions. 

(i) The entire separated wake is taken to be bounded by two smooth free- 
streamlines, each of which consist of two different parts. The first part covers the 
near-wake region which starts from the separation point down to a certain point 
which is determined from the theory. The pressure along this part assumes a 
given constant valuep,, the wake under-pressure or the cavity pressure. The value 
of p ,  will be assumed to be less than the free-stream pressure, pm,  throughout this 
work. Along the remaining part of the free streamline the pressure is assumed to 
change continuously from I) ,  to p a  at an infinite distance downstream. 

(ii) The only kinematic condition on the free streamlines in the physical plane 
is that they become asymptotically parallel to the main flow at infinity. 
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(iii) The flow outside the wake is assumed inviscid and irrotational. 
(iv) The images of the variable-pressure parts of the two free streamlines in 

the velocity plane (or the hodograph plane) are assumed to form a branch slit 
of undetermined shape. This will be referred to as the ‘ hodograph-slit condition’. 
Although this assumed flow configuration becomes over-simplified and hence 
invalid in the far-wake, it is to be expected that the rough approximation of the 
far-wake will not bear a predominant influence on the actual flow field near the 
body. 

This wake model will now be applied to treat the wake (or cavity) flow past an 
oblique flat plate for both full and partial wake-flow regimes. The latter case will 
be treated separately in $3,  in which case the constant-pressure part on the lower 
free streamline disappears. Furthermore, these analyses may be utilized to treat 
the wake flow past a plate with a small camber; the resultant flow may be con- 
sidered as a small perturbation with respect to the basic (non-linear) flow past 
the flat plate. The treatment of this last problem, however, will be postponed to a 
future paper. 

The present free-streamline theory is applicable to both wake flows in one- 
phase media (such as in air) and cavity flows in water since the present theoretical 
results is found to be in good agreement with the experimental observations of 
Fage & Johansen (1927), which deals with wake flow in air, and the experiments 
of Parkin (1956), of Silberman (1959), and of Dawson (1959), which are all con- 
cerned with cavity flows in water. 

2. Fully developed wake flows and cavity flows 
3.1. Analysis of the $ow Jield 

Adopting the present wake model, we consider specifically the steady plane flow 
of an incompressible fluid, with free-stream velocity U and pressurep,, impinging 
on an oblique flat plate such that the flow separates from the leading edge A and 
trailing edge B, forming two free streamlines ACI and BC’I which are assumed t,o 
become asymptotically parallel to the main stream at downstream infinity I (see 
figure 1). The shape of ACI and BC’I in the physical plane is otherwise unknown 
a priori. We adopt a Cartesian co-ordinate system (x, y), with the x-axis lying 
along the plate AB and the origin at the leading edge A. The flow outside the 
wake is assumed inviscid and irrotational, hence there exists a velocity potential q5. 
As usual, we introduce the complex variable x = x + iy, the complex potential 
f ( z )  = 9 + i$, and the complex velocity 

w(z) = df/dz = u - i v  = qe-ie, (1) 

where u and v are the x- and y-components of the velocity, q = I wI , and 8 is 
the inclination of the velocity vector to the x-axis. Let a be the angle of attack 
of the plate, then 

w = w,, = Ue-ia at z = 00. ( 2 )  

The kinematic and dynamic conditions on the free streamlines ACI and BC’I 
are imposed as follows. We assume that the pressure 

p = pc < p, along AC and BC’, (3) 
11-2 
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and that p varies continuously and monotonically from p ,  to p a  along C I  and C'I. 
From (3) and the Bernoulli equation it follows that 

q = const. = q, along AC and BC', P a )  

p + ipq2 = p* + +pu2 = p ,  + +p& (4) 

so that the Bernoulli equation of the external flow may be written 

z-plane 

f Y  

p increases from 

X 

f-plane 

21 

5. 

FIGURE 1. The free-streamline model for the fully developed wake flow past 
an oblique flat plate and its conformal mapping planes. 

Since the points C and C' are located on the two branches of the same stagnation 
streamline, and since they are the end-points of a constant pressure region, we 

For complete determination of the points C and C', we now introduce the assump- 
tions that the potential q5 and the flow inclination 8 have respectively the same 

q5c 5 (bc., 8, = 8,.. (5b)  
valuss at C and C': 

Equations ( 5 a )  and ( 5 b )  can be combined in the form 
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In  the far-wake region bounded by streamlines C I  and C'I, the flow is assumed to 
be dissipated in such a way that p and w on the boundary CI  and C'I change 
monotonically from pc  and wc, eventually recovering their main-stream values 
p a  and wo at  infinity downstream. The images of the free streamlines C I  and C'I, 
on which @ = 0,  is further assumed to form a branch slit (of undetermined shape) 
in the hodograph w-plane so that the flow field in the hodograph plane will be 
simply connected and simply covered, this being the hodograph-slit condition. 
The postulated configuration of the fully developed wake flow (or cavity flow) 
requires that Re (zc'-zB) B 0; otherwise the wake flow becomes partially de- 
veloped. Aside from this phenomenological description of the free streamlines, 
the details of the flow within the wake (presumably viscous and rotational) are 
otherwise immaterial in connexion with the exterior flow and hence will not be 
pursued further in the present work. 

It may be pointed out here that in the previous treatment of similar flow 
problems by Wu (1956a) and Mimura (1958), the two conditions in ( 5 b )  were 
replaced by Oc = a and 8, = a, and the hodograph-slit condition was reduced 
to the special form that C I  and C'I become straight lines parallel to the main flow. 
The reasons for adopting the present conditions are: first, this model gives a 
reasonably good description of the flow outside the wake in comparison with 
actual flow visualizations; second, use of these conditions provides a rather 
smooth transition t o  the partial wake flow; and last, the present flow model 
results in a somewhat simplified analysis. The validity of the present theory of 
course may only be justified by its agreement with the experimental results. 

For simplicity, both the plate length 1 and the constant speed qc on the cavity 
wall will be normalized to unity so that from (4) we have 

where 
qc = 1, u = (l+a)-&, 

fT = ( P m  - P c ) l ( W 2 ) .  

The dimensionless parameter f~ is usually called the wake under-pressure co- 
efficient or the cavitation number for cavity flows; this parameter characterizes 
the wake flow. In  fact, the different flow regimes of the fully and partially de- 
veloped flows can also be indicated by different ranges of f ~ .  

Several streamlines 9 = const. in the w-plane are illustrated in figure 1. Under 
the normalization qc = 1 and the hodograph-slit condition, the bounding 
streamline @ = 0 forms the boundary of the semicircle of unit radius in the 
lower-half w-plane and the slit CIC'; the entire flow is mapped onto the interior 
of the simply covered semicircle. It is convenient to introduce the parametric 
<-plane, defined by 

By this transformation the entire flow is mapped onto the upper-half <-plane, 
with the point quo = U ecia mapped into 

(8) 6 = +(w-l+w). 

C0 = +(W;~+W,)  = +(U-1&+ Ue-ix). (9) 

Since 9 = 0 on the entire real <-axis, the complex potentialf(5) can be continued 
analytically into the lower-half <-plane by 

f ( C )  =fO. (10) 
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Now from the asymptotic behaviour of the streamlines $ = const. near the point 
I, it is evident thatf(<) must have a simple pole at  5 = Q. Otherwise the function 
f ( [ )  is regular everywhere else in the upper-half <-plane. The analytic continua- 
tion (10) can be satisfied by placing a simple pole at  < = go, which is the reflexion 
of the first pole in the real <-axis. Furthermore, f has only one zero in the entire 
flow and that f = 0(<-2) as 151 -+ 00 is obvious from the fact that a small circle 
(counterclockwise) around D in the f-plane is mapped into a large semicircle 
(clockwise) in the [-plane. Therefore it follows that the solution must be of the 
form 

where A is a real constant. Since $ = 0 on the lines CI  and C'I, we must have 
arg ( 5 - 6 )  +arg ( [ - co )  = 0 for 6 lying on these lines; hence CI and C'I are 
straight lines parallel to the imaginary <-axis. In  particular, at C and C', we find 

cc = cc = Re&, = *(U-l+ U)cosa. 

We shall now assign the range of U for the full wake flow (or the fully cavitating 
flow) by the condition? that the point C' be located downstream of the trailing 
edge B, or, <G < L& = 1. The corresponding range of U is determined from this 
condition and the above equation as 

U, = (l-sina)/cosa = cosa/(l+sina), (12a) 

in which the upper limit U < 1 follows from the physical condition g 2 0 (see 
equation (7 a)). From (7 a )  and (12 a) we find for the full wake flow 

0 < < g1, g1 = Ui2-1 = 2tanacot(&r-$a). (12b)  

Note that g1 N 3a as a -+ 0, and gl N 4(a - @ - 2  as a --f +r. Thus for a given a,  
U has a lower limit q ( a )  and (r has an upper limit gI(a) for the fully developed 
wake flow. Let w = e c i Y  a t  C and C', then from (8) 

Ul < U < 1, 

cosy = ,& = +( u-1+ U )  cos a. (13) 
This equation asserts that 0 < y < a for U lying in the range given in (13a). 
Thus the flow inclination y at C and C' is always less than its free-stream value a;  
they are equal only when U = 1. 

Combining (8), ( O ) ,  and (ll), we obtain 

where wo is given by ( 2 ) .  We see here that the present model yields the complex 
potential as a one-valued analytic function of w in a closed form. 

The physical z-plane is determined by integration as 

dw = [f]'" w -1 +I" -1w2 f d w ,  

which gives 

z(w)+a = { f ( ~ ) / w ) + i B { ( ~ ~ ~ - - ~ , , )  [w~llog(w-wo)-wolog(w-w,-l)] 

-(Wcl-Wo) [ W ~ l ~ O ~ ( W - . l o , ) - W o l ~ ~ ( ~ - W ~ l ) ~ } ,  (15b)  

t For further discussion of this condition, see the remarks following equation (17rc). 
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where the constant B is related to A by 

A / B  = 3(U-l- U)sina[(U-l+ U)2-(2cosa)2]. (15C) 

The real constant a in (15 b )  is of such value that z = 0 at  the point A. This result 
shows that z(w) has a simple pole and a logarithmic singularity at the points 
wg, Go, l/w,, 1/57,. The logarithmic singularities of x(w) are admissible since the 
flow does not cover the entire z-plane due to the infinitely long wake. In  order 
that z(w) will be single-valued in the flow region, two branch cuts are introduced 
in the w-plane, one from w, along IC to I/%,,, the other being the reflexion of the 
first cut into the real axis. Now since the plate has unit length, z( 1)  - z( - 1) = 1. 
The result of this calculation gives 

(U-1+ U)2 - ( 2  cos a)2 tan-l(------) U-1- u . 
(16 b) + (U-1- U)sina 2 sin a 

This relation determines the coefficient A ,  and therefore completes the solution. 
It is noted that A and B are positive real constants. 

When the point w moves along the cut from C' to I and back to C, the function 
log(w-w,) increases by 2ni while the other functions in (15b) resume their 
original values. Hence 

zc - zc = (BnB/w,) (z,, - %;I) = - ZnB( Uu2 - cos 2a - i sin 2a), (1 7 a )  

which shows that xc < xc,, that is, the projection of the point C on the plate is 
always upstream of C'. Consequently, as the cavitation number increases ( U  
decreases), the point C will pass over the trailing edge I3 before the point C' 
reaches B at  U = U, (see equation (12)). It will be seen later that in order to 
have a smooth transition to the partial wake-flowregime treated below, we should 
adopt for the range of fully developed wake flow, instead of (la),  the condition 
Rez, 3 Rez,, and then consider a different flow regime after xc becomes 
equal to xB and before the point C' reaches the trailing edge B. However, it  is 
found that the hydrodynamic forces in the present case given below are continuous 
even for U < U,, although the flow configuration for U < U, is no longer the full 
wake flow under consideration. From the numerical results it will be shown that 
the transition to the partial wake-flow case can be interpolated very smoothly, 
especially when the incidence angle a is small. Therefore, for practical purposes, 
condition (12) may be used as the approximate range of U in the full wake-flow 
r6gime. 

The distance between the points C and C' in the direction normal to the main 
flow is 

This quantity may be compared with the lateral spacing of the Kiirm6n vortex 
street behind the oblique plate. 

h = Im [(zc - zc') ecia] = 2nB( 1 + U-2)  sin a. (17b) 
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2.2. Lift and drag 

With qc normalized to unity, the pressure difference (p -pc )  may be written, 
from (4), as p - p ,  = $p(l-qZ) = Bp(1-wW). 

Let the x- and y-components of the hydrodynamic force acting on the plate be 
denoted by S and Y ,  then 

B 

S + i Y  = iJA (p-pc)dz  = i ip j (1 - w 3 )  dz, (19) 
CABC' 

where in the last step the contour of integration is extended to CABC' since 
WW = 1 on AC and BC'. The first term of the last integral is simply 

x, + i Y ,  = +ip(zc - zc)  = - (i?rpR/w,) (Go - E01) 

by using (17  a). The complex conjugate of the second term in (19) is 

s CABC' df 
x,-iY, = i ip 

sincefis purely real on CABC'. The last step is obtained by integration by parts 
and by making use of condition (6); the corresponding contour in the w-plane is 
counterclockwise around the unit semicircle. Now the integrand is analytic, 
and regular everywhere inside the contour except at the simple pole w = wg. 
Hence by applying the theorem of residues, 

x, - iY, = i7rpBwn(3, - Z01). 

S = 0, Y = npB( U-, - Uz) .  (20) 

Combining S, + iY.. and S, + iY, to obtain X + iY, we find that 

Therefore the hydrodynamic force of magnitude Y acts normal to the plate. 
The normal force coefficient is defined, as usual, by CN = Y/(+pU*Z), where I 

is the plate length (which is set to unity presently). Hence from (20), (15c) and 

(21) 
(16)) we obtain 

C1\, = ?r(U-l+ U)/(KU2sina), 

where li' is given by (16 b) .  The lift and drag coefficients are of course 

( 2 2 )  C, = CAT cos a, C, = C, sin a. 

The coefficients C, and C, are plotted versus the under-pressure coefficient cr 
for several values of a in figures 2 and 3. In  figures 4 and 5 the coefficients CL and 
CD are also plotted versus cr on a log-scale in order to incorporate the values of 
C, and CD in the partial wake-flow case. Fortunately there are several experi- 
mental results available for comparison with the theory. The experimental 
measurements of C, and CD for a cavitated flat plate in a high-speed closed water 
tunnel reported by Parkin (1956) are shown in figures 3 and 3. Also included in 
these figures are the experimental data of C, and C, for a cavitating flat plate in 
a free-jet water tunnel presented by Silberman (1959). A third set of data are 
taken from Dawson's experiments (1959) which were carried out in a free-surface 
water tunnel. All these results are reproduced here with cr equal to tho cavitation 



Wuke model for free-streamline $ow theory. Purt 1 169 

number based on the measured cavity pressure and without the correction of the 
tunnel boundary effect. The present theory overpredicts slightly these data at 
small cavitation numbers, but the general trend of agreement between the theory 

I .z 

1 .o 

0 8  

c, 0-6 

0 4  

0 2  

0 

I I 

I 

I I 

FIGURE 2. Variation of CL with the wake under-pressure coefficient CT (or the cavitation 
number) for the flat plate. Parkin's experiments were performed in a high-speed closed 
water tunnel, Silberman's experiments in a free-jet water tunnel, and Dawson's experi- 
ments in a free-surface water tunnel, all data being reproduced here with CT equal to the 
cavitation number based on the measured cavity pressure and without the correction of 
the tunnel boundary effect. -- , Present theory. Parkin's data: v, a = 8"; 0, 

Silberman's data. t, '., Dawson's data. 
a = 10"; +, a = 15'; A, LY = 20"; <>, CL = 25"; 0 ,  a = 30"; a, a = 60". A, +, 

and experiments may be considered to be good. In  figure 4 several values of C, 
derived from the experiments made by Fage & Johansen (1927) for the wake flow 
of air past a flat plate are included; these data are obtained with r based on the 
measured constant base pressure and without wall-effect! corrections. A com- 
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parison shows that the present theory is in excellent agreement with these experi- 
mental results. 

In the limit, as U --f 1 (or + 0) ,  we find from (21) that 

C, = 27rsina/(4+nsina), 

which is the familiar classical result of Kirchhoff for the infinite cavity flow past 
an inclined lamina. When the plate is set normal to the flow, a = $r, we have 

1.2 

1 *0 

0 8  

0 6  

0 4  

0 2  

0 
0- 

FIGURE 3. Variation of CD with u for the flat plate (same legend as figure 2). 

by symmetry that Oc = 8, = +7r which are the conditions adopted by Roshko 
(1954) in proposing his model. For a = in, we deduce from (21) that 

C, = C, = $7r{ U3( 1 + UJ2)-l + U2( 1 - U2)-l [in - (1 + U 2 )  tan-l U])-l, (23) 

which is the result of Roshko (1954). 
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When the point C' approaches B, so that the region of constant pressure is 
limited to the space above the plate, one derives for U = U, (see equation (12)) 
and for a small the result 

- 
c, M c, M 7Ta. 

1 -0 
U 

10 

FIGURE 4. Variation of C L  over an extended range of cr to cover both the fully and par- 
tially developed wake flows past the flat plate, the transition between these two regimes 
of wake flows being appropriately faired-in with dashed lines. The experiments of Fage 8: 
Johansen were carried out in a wind tunnel, the results being reproduced with the wake 
under-pressure coefficient based on the measured constant base pressure and without the 
correction of the tunnel wall effect. - , Yresent theory. Fage & Johansen data: A ,  
a = 15'; 0, CL = 30"; 0, CL = 40"; 0, CL = 50"; 8, a = 60"; 0, u = 70". 

Therefore, as the full wake flow is at the transition to partial wake flow, the lift 
coefficient on the plate held a t  a small incidence angle is approximately half the 
aerodynamic value 2na. 

3.3. Pressure distribution and the free-streamline configuration 

The pressure distribution on the wetted and separated sides of the plate is readily 
determined from (4) and (15), which provide a parametric representation of 
p ( z ,  9 ) .  On the separated side p = pc,  hence 

c, = (p-pm)/(*pU2) = -0.. (25a)  
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On the wetted side w is real, - 1 < w < 1, hence, from (4) and (7), 

C;, = 1 - ( 1 + ( ~ ) w 2  for -1 < w < I;  

and, from (15), for - 1 < w < 1,  

.(W) = A u2 I (  - 1)  + wl(w) + JY1 I(u) 4, [ 
I (w) = (U~+W2-2WUCoSCL)-~(l +w2U2-2wUcosa)-l. 

0.1 

(25 b )  

(26a)  

(26b) 

0 

FIGURE 5. Variation of CD over an extended range of u for the flat plate. The dashed 
lines for CT > 1 are not the theoretical results, but are shown t o  indicate what would be 
expected on physical grounds. 

The above parametric solution C,(w) and x(w) is shown in figure 6a-d for 
CI = 90" (a) ,  69.85" (b ) ,  49.85" (c ) ,  29.85" (d), with the respective under-pressure 
coefficient (T = 1.380, 1.360, 1-230 and 0.924. The corresponding experimental 
results were obtained by Fage & Johansen (1927); the mean 'base pressure 
coefficient ' ceXp was observed experimentally for the wake flow in air. However, 
no correction due to the tunnel wall effect was made for these data. A comparison 
shows that the present theory and the experiments are in excellent agreement. 
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The shapes of the free streamlines AC and BC' can be determined from (15) as 
follows. Along AC, w = e-i*, y 6 8 6 7 ~ ,  y being given by (13), we have 

Z - Z A  = - 
A U 2  eie + A U2 

( 1  + u2 + 2u cos a)2 [ 1 +  u2 - 3u cos (6 -a)]  [1+ u2- 2u cos (8 +a)]  

a )  

d 

FIGURE 6. Pressure distributions on the wetted and separated sides of the oblique plate. 
The experimental results of Fage & Johansen are reproduced from graph reading of the 
original paper, as the tabulated data are not available. ~ , Present theory. 0, Fage & 
Johansen data: (a) a = 90"; c = 1.380; (b) a = 69.85", u = 1.360; (c) a = 49-85", 
c = 1.230; (d )  01 = 29.85', u = 0.924. 

Along BC', w = e-ie, 0 < 8 6 y ,  we obtain 

2 - Z g  = 
A U Z  eis A U2 

[1+ u2- 3u cos (0 -a)] [1+ u2 - 277 cos (0 +a)] - (1  + u2- 2u cos a)2 

- iAU2 1; eie [1+ U z  - 2U cos (6 - .)]-I [1+ U z  - 3 U cos (# + ~ c ) ] - ~ d 6 .  (37 b )  

The shapes of the free streamlines AC and BC' can be calculated from these equa- 
tions for given a and cr. 
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In  particular, the transverse distance h between the points C and C' in the 
direction normal to the main flow, given by (17b), can be expressed by using 

( 1 5 ' ) 7  (I6) and (21) h/l = r-lCLvsina = CD/g,  (37c) 

where the plate length 1 is restored for completeness. This simple result can also 
be derivsd by a momentum consideration applied to the far-wake ICC'I. In  
figure 7 this value of h/l is plotted versus u for several values of a. Also shown in 

2.5 

2.0 

1.5 

0 

(T 

, Present FIGURE 7 .  Variation of the asymptotic width of the wake with cr. __ 
theory. Fage & Johansen data: 0 ,  a = 90"; A, a = 70"; 0, a = 40". 

figure 7 are a few values of h/l calculated by Fage & Johansen (1927), using K&r- 
m&n's stability relation h = 0-%la and the measured values of the vortex spacing 
a. The present theoretical result compares favourably well with such estimates, 
although this flow model is not expected to reproduce any details of the far-wake 
flow. In  the actual measurements of hll, however, Fage & Johansen reported that 
h/l increases towards the downstream as the vortices diffuse. 

3. Partially developed wave flows and cavity flows 

As described in § 1, the partially developed wake flow is defined by a configuration 
in which the near-wake of constant pressure pc  covers only a part of the suction 
side of the lifting plate, starting from the leading edge A and terminating at a 
certain point C upstream of the trailing edge B (see figure 8). The pressure in the 
wake further downstream increases continuously and recovers a t  infinity 
downstream its upstream value p,. In  order to describe this type of flow to a 

3.1. The jozu model; analysis of the flow jield 
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good approximation and to render the flow exterior to the wake subject to simple 
analysis, the following model is proposed. 

The stagnation streamline ID is split into two branches; one of them follows 
the lower surface to the trailing edge B and then forms a free streamline BI, 
extending to downstream infinity I; the other branch separates from the leading 

z-plane .f 

f-plane 

FIGURE 8. The free-streamline model for the partially developed wake flow pest 
an oblique flat plate and its conformal mapping planes. 

edge A to form another free streamline ACB'I such that p = p ,  on AC, with 
xc d xB, and that p increases monotonically along CB'I. The streamline CB' is 
assumed to be parallel to the plate. The point B' is defined by 

$B = $Bt = 0 and Re (zB, - zB) = 0. (28a)  

Furthermore, we assume that the complex velocity w takes the same value at  B 

wg' = wB( = uT say). (28b)  
and B', 

This condition implies that the velocity at  B' is parallel to the plate, and that the 
pressure at B' and B are equal, Physically it is conceivable that, if the wake at the 
trailing edge is narrow, the pressure cannot vary appreciably across the wake. 
This condition will be imposed even though the wake may be moderately thick. 
However, for a > 45", the condition ( 2 8 h )  would be expected to lose gradually 
its physical significance, since the non-uniformity of the pressure distribution 
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across the wake and over the suction side of the flat plate gill extend over such a 
wide region that the flow outside the wake can no longer be approximated by this 
simple description, After all, from the physical point of view, t,he partial wake 
flow would be of interest only for small and moderate values of a. For this 
reason, our present treatment will be limited to the range 0 < a < 45". 

Conditions (28 a, b )  define the point B' and replace the assumptions (5 a, b )  for 
the case of full wake flows. The streamlines B'I and BI will again be assumed to 
form a slit in the hodograph plane (the hodograph-slit condition). As in the pre- 
vious case, the plate length 2 and the constant speed q, on AC are again both nor- 
malized to unity. Since p increases monotonically along CB'I, the pressure pT 
a t  B and B' is greater than p,, and hence obviously 0 < uT < 1. 

It should be noted that, if conditions (%a, b)  are to be fulfilled, a circulation 
around the wake must be introduced, and consequently the potential f will not 
have the same value at  B and B'. In  fact, we must have f B .  -fu = I?, where I' 
is the circulation around BDACB'. The existence of a circulation is an essential 
feature of the partial wake flow as compared with the previous case; without the 
circulation, the transition to the fully wetted flow would be greatly impaired. 

Under the normalization qc = 1 and the hodograph-slit condition, the flow is 
mapped conformally into the interior of a simply-covered semicircle of unit radius 
in the lower-half w-plane as shown in figure 8. The illustration is self-explanatory. 

By the transformation (8) the entire flow is mappedinto the upper-half <-plane, 
with the point wo = Uee-ia mapped into c0 given by (9); the boundary of the semi- 
circle in the w-plane is mapped into the entire real <-axis. From the configuration 
of the streamlines near 5 = c0, it  is again evident that f must have a simple pole 
a t  5 = Q. Furthermore, in order to satisfy (28a, b )  a vortex must be introduced at  
5 = c0. From this singular behaviour off and the property (10) it follows that the 
solutionf(6) must be of the form 

<- !& - ir log , Q 
6-Q c-<o  5- C O  

3rrf(<) = __ Q +- (29) 

where Q (complex in gen.era1) is the strength of the simple pole and I' (real) 
is the circulation about 5 = <,,. From the local conformal behaviour off(5) near 
5 = co, as was explained for (11), we must again require that f = O(<-z) as 
161 -+ co. Expanding the right-hand side of (39) for large 5 and equating the 
coefficient of 

where use has been made of (9). Let the value of 5 a t  B and B' be CT, then from 
(8) the value of w at  B and B' is 

Obviously we must have c7, > 1 so that 0 < uT < 1 for the partial wake flow. 
The streamlines BI  and B'I form a slit which is perpendicular to the real <-axis 
a t  Then, since a small semicircle around B in the f-plane is mapped into 
a small quarter-circle around CT in the <-plane, it follows that df/dC = 0 at  
< = CT.  From this condition and (30) we obtain 

to zero, we obtain 
Q + &  = - i r (~o-~o)  = (U-1- U)rs ina ,  (30) 

u T  = <T-(<$-l)'. (31) 

<, = ( Q C O  - Q < O ) / ( Q  - &, = i 4 - 0  + <CJ + Q(& + &I (Q - B Y  ( C O  - <o) 
= +(U-l+ U)cosa-&i(Q+Q) (Q-Q)-1(U-1- U)sina. (32) 
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The physical plane x is determined by the integration 
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(33a)  

Carrying out the integration and making use of (30), we obtain 

3Q b-ir -+-   log (w - wo) 
y”Q 27r(x+a) = ~ 

(w - wo) (w - w;l) (w -Go) (w -Z&l) wo 

where b = -3Q/(u~ol-wo) = -3Q/(U-leia- Ue-ia), (33c) 
and the real constant %a is determined such that z = 0 at  the point A. The func- 
tion z(w) has a simple pole and a logarithmic singularity at  the points wo, Go, 
l/wo, l/Go. In  order than z(w) be single-valued in the flow field, two branch-cuts 
are introduced in the w-plane, one from wo along I B  and its image path (reflected 
into the real w-axis) to w = go, the other being the image of the first cut into the 
unit circle wG = 1. As the point w traces along the cut from B, around the point 
w,, and ends up at  B’, the function log (w - w0) increases by 27ri, whereas the other 
functions in (33b)  are unaltered. Hence from (33) 

zB, - zB = i(b - ir) /wo. 
But condition (28a) requires that (xs. - x B )  be purely imaginary, say 

zBz - zB = ipr, (34) 
where P is a real constant. By comparison we have 

b = (Pwo+i) I?. (35) 
From (30), (33c) and (35) we can solve for /3, Q and B, giving 

P =  2Usina/(l-U2cos3a), (36) 
(37) Q = g?{( U-1- U )  sin a - i cos a( U-l - U + 2PU2 sin a)}. 

Substituting this equation in (33), we obtain 

- ~~~ 

(1 - U2)2 sin2 a 
2U cos a( 1 - U2+ ~ P U S S ~ ~  a )  ’ &, = Q( u-1 + U )  cos a + -- -- 

which is determinate for given U and a. Now application of the condition CT > 1 
to (38) for the partial wake flow will lead to a permissible range of U for each a, 
say 0 < U < Up(a)  such that <,(U,,a) = 1. However, it  can be verified that 
U,(a) is approximately equal to Ul(a) defined by (12) for moderate and small 
values of a. In  fa.ct, it is readily shown that 

<&Il, a) = 1 + Qa3 + O(a4)  as a + 0. 

Therefore, the difference between U, and Up will not be pursued further, and 
0 < U < li, will be used as the approximate range of U for the partial wake 
flow. 

Upon substitution of (35) to (37) into (33), we obtain 

3n(x + .)/I‘ = 2U( 1 - U2) sina[l + w2- 2wU cos a(1 -PU sina)] I ( w )  
+ p log [(w - wo) (w - Go)] - w0(Pwo + 3i) log (w - w;’) 

-wo(~wo-3i)log(w-G;~), (39) 
12 Fluid Mech. 13 
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where I ( w )  is given by ( 2 6 b ) .  Finally the circulation strength I’ is determined by 
the scale of the plate length such that zB - z, = z(u,) - z( - 1) = 1. The result of 
this calculation yields 

n-/r = U (  1 - U2) sin a([ 1 + u$ - 2u, U cos a( 1 - PU sin a)] I(uT) 

in which P is given by (36), I ( w )  by (26b), and uI1, by (31) and (38). This equation 
determines the circulation in terms of U and a. 

It is of interest to note the limiting case of the fully wetted fl0w.t From (36), 
(38) and (31) we deduce immediately that, as U -+ 0, 

(41 a )  P x 2U sin a, &. G (1 + U 2  cos 2a)/2U cos a, uT z U cos a, 

and hence, from (40), that 

I? x rrUsina{l-(Usina)210g(Usina)2+O(U2)) as U -+ 0. (41b) 

Furthermore, it is seen from (34) that zBr-zB -+ 0 like U2 as U -+ 0, and from 
(39) that zc = z(1) -+ 0 as U -+ 0. Thus as U -+ 0 (or rather U/qc -+ 0 as qc -+ co 
for fixed U ) ,  the constant-pressure region vanishes and the thickness of the wake 
reduces to zero, the flow thereby becoming fully wetted. The results that 
uT. = TJ cos a, and r/(chord) = rrU sin a are of course both well known in airfoil 
theory. 

3.2. Lift and drag in the partial waEeJfow 
The calculation of the hydrodynamic forces on the inclined plate in a partial 

wake flow is less straightforward than in the full wake-flow case, since if the 
forces are to be determined by integration of the pressure difference across the 
plate, the pressure on the suction side of the plate is now subject to certain arbi- 
trariness in interpretation. However, in view of the physical significance of the 
condition (28b) ,  we shall assume that the hydrodynamic force acting on the plate 
is equal to that on the closed body B’CADBB’, with its base BB’ exposed to a 
uniform base pressure p,. This assumption enables us to calculate the force 
directly from the exterior potential flow without considering the viscous flow 
of the real fluid within the wake. The force so determined may be conjectured 
to include the effects due to cavity formation near the leading edge and the 
equivalent dissipation in this potential flow model. 

For the present purpose the Bernoulli equation may be written 

f ipwc = pT + $pu$. (43) 

The hydrodynamic force acting on the plate is then given by 

S + i Y = i ( p  -pT)  dz = i i p  (u$ - t u s )  dz, (43) 
Ic. $c 

t The fully wetted flow past a flat plate can physically be realized only when the leading 
edge is sufficiently round. 
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where the contour C denotes the path B'CAB. This is the pressure integral on the 
closed body B'CABB' since p = pT on BB'. The first term of this integral is 
simply 

X,+QY, = 4ip.g dz = +ipu~(zB-z zg ' )  = +pugppr, I c  
using (34). The complex conjugate of the second term in (43) is 

where the contour C, is counterclockwise around the unit semicircle in the w- 
plane. Now, from the previous solution (29) and (8), it  is seen that the above 
integrand wdfldw is an analytic function of w, whose only singularity within 
the contour Cw is a double pole a t  w = wo, at which the residue is found to be 
- (b  + ir) wo/27r. Hence, by the theorem of residues, 

X -iy - - -1 2p( b + i r ) w o  = - p r w o ( i + i p ~ , o ) ,  

where use has been made of (35). Combining X,+iY, and X2+iY2 to obt,ain 
X + i Y, we find that 

X + i Y  = pUrei"[i+4pU(ugU-2e-ia-eia)]. (44) 

It is noted from the above result that the force component parallel to the plate, 
S, generally does not vanish in the partial wake flow. In  particular, when U -+ 0, 
use of the limiting values (41 a, b )  in (44) yields 

X = -pUrsina,  

which is known as the leading-edge suction in airfoil theory. (That the tangential 
force component X is in general not zero perhaps cannot be explained entirely 
within the framework of potential theory. This is partly because the approxi- 
mated mechanism of dissipation takes place over a portion of the plate. In  the 
real physical case, the flow pattern is of course very complex.) 

Finally, resolving the force into a lift L and a drag D, we obtain 

D + il; = (X + i Y )  ecia = pUr [ i  + +pU(u$ U-2e-ia - e+ia)], 

C, = I;/+pU2 (chord) = (2/U)r[l -gpU(l+u$U-2)sina], 

CD = D/+pU2 (chord) = pr(& U-2- 1)  cos a, 

(45) 

(46) 

(47) 

where /3 is given by (36), uT by (31) and (38)) and I' by (40). Near the transition 
between the full wake and partial wake flows, we let U = U, (see equation (13)) 
and consider small values of a. For this case we derive from (12)) (36)) (31) and 

and hence 

(38) that u, M 1-a++a2, p M 1-a++a2, UT M 1--a+-*a*, (48) 

C, % m, C, M aC,, for U = U,(a < 1). (49) 

and, from (40)) l? M Jm. Substituting these values into (46) and (47)) we obtain 

On the other hand, in the limiting case of fully wetted flow, U -+ 0,  we substitute 
(41) into (46) and (47)) giving 

(50a) 

CD M -2nU2sin4acosa. ( 5 0 b )  

CL M %r sin a[ 1 - ( U  sin a)2 log ( U  sin a)2 + O( U 2 ) ] ,  

12-2 
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Equation (49) coincides with (24) and ( 2 2 )  which are the upper limits of C, and C, 
in the full wakeflowfora < 1 ; this indicates that the transition from the full wake 
to partial wake flow is smooth for small and moderate values of incidence angle a. 
Equation (50a)  shows that for small U ,  CL is slightly greater than the classical 
a,erodynamic value 2.rrsina and eventually tends to 2nsina as U -+ 0. This is 
known as the leading-edge bubble effect which produces a small positive camber 
over the original flat-plate airfoil. For small U ,  ( 5 0 b )  shows that C, attains a 
negative value, which is very small for small a and is of smaller order than the 
classical leading-edge suction. This rather unfavourable result may be attributed 
to the over-simplification of this partial wake-flow model. 

Equations (46) and (47) are plotted in figures 2 to 5 for a range of a from ao 
to 40". For moderate values of a, the result shows that the transition from the full 
wake to partial wake flow becomes increasingly less smooth with increasing a; a 
smooth curve in the transition region is appropriately faired-in with dashed lines. 
Furthermore, the drag has been found to become negative (but small in magni- 
tude) beyond a certain range of the cavitation number o; this part of the curve is 
shown by the dotted lines. In spite of these rough approximations, the present 
wake-flow model is seen able to account for the salient features of the wake flow, 
as the incorporated experimental results clearly indicate. 

Concluding remarks 
It may be mentioned that in dealing with the plane cavity flows past a thin body 

at  a small angle of attack, Tulin (1955) proposed a linearized theory which has 
stimulated numerous research activities. A survey of the literature in this field 
has been given by Parkin (1959). Among these works it suffices to cite a few which 
are relevant to our present consideration. The supercavitating flat plate was first 
treated by Tulin (1955); the case of arbitrary profile was considered by Wu 
(1956 b). The linearized theory has been extended independently by Acosta 
(1955) and by Geurst & Timman (1956) to deal with the partially cavitating flat 
plate, and by Geurst (1960) to consider the partially cavitating plate of arbitrary 
profile. Another linearized theory based on a different cavity-flow model has 
been proposed by Fabula (1958), which is also reviewed in Parkin (1959). For 
further discussion of these theoretical results and a comparison between the 
linearized and non-linear theories and the experiments, reference may be made 
to Parkin (1959, 1961) since such a task is beyond the scope of the present paper. 

This work was sponsored by the Office of Naval Research of the U.S. Navy, 
under contract Nonr 220(35). The assistance rendered by Mrs Zora Harrison in the 
computations and graphical works and by Mrs Barbara Hawk in preparing the 
manuscript is greatly appreciated. 
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